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The second virial coefficient was evaluated for the two-centre, three-centre and four-centre Lennard–
Jones molecules with the site–site distance l ∈  (0,1) at the reduced temperatures Tr = 0.6 – 3.0. The
obtained data are correlated by an expression derived originally for the Kihara non-spherical mole-
cules; the same value of the σ-parameter is considered for the both pair potentials whereas
εKihara/εncLJ and lKihara /lncLJ vary with the increasing values of lncLJ. Values of the virial coefficient of
the individual ncLJ molecules agree within error bars with experimental values in the whole tempera-
ture range studied; with only slightly higher deviations also data for the single 2cLJ, 3cLJ and 4cLJ
molecules for all the lncLJ values can be correlated.

The second virial coefficient represents itself an important thermodynamic quantity
which enables to determine the phase behaviour of mildly dense gases. Whereas exact
(analytic) expressions are available for many pair potentials of the central type (which
depend only on the centre-to-centre distance, r, and are typical for the so-called simple
fluids) and potentials used to characterize interactions of polar spherical molecules, the
situation is less favorable in the case of non-spherical molecules. For non-spherical
molecules essentially two different types of potentials have been used, namely the
multicentre pair potential and the generalized Kihara potential1 – 3. In the former case,
several interaction sites are ascribed to the studied molecule and the total interaction
potential is given by a sum of all the site–site contributions (with exception of those of
sites on the same molecule). In the case of the Kihara potential, convex cores are ascribed3

to the given molecule and the interaction pair potential is assumed to be the function
of the shortest surface-to-surface distance only. Due to the fact that the Kihara pair
potential depends only on the surface-to-surface distance, it is possible to write for such
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molecules exact expressions for the second virial coefficient, too. They are simple ex-
tensions of those for the corresponding pair potentials of simple fluids3 (e.g. the 12-6
function). In the case of systems where molecules interact via the multicentre pair
potential, e.g. the two-centre Lennard–Jones (2cLJ) potential, the interaction energy is
given by four contributions of the 12-6 functions for four different site–site distances
r12
αβ which are related4 to the centre-to-centre distance r12 and orientation angles ωi ≡

θi φi. Because of this complexity of the pair potential, an exact formula for the 2cLJ and
other multicentre Lennard–Jones (ncLJ) molecule fluids is not available.

Contrary to this situation, simulations in the multicentre molecule systems are sim-
pler than those in the Kihara fluids and numerous simulation data have been published
for dense 2cLJ systems. In order to be able to describe in a simple way the behaviour
of these systems at densities tending to zero, approximate methods to correlate and
predict values of the second virial coefficient of the ncLJ systems have been sought.
Kohler and Quirke5 assumed that the Boyle temperature, TB, was a suitable quantity to
reduce the temperature scale. However, values of TB result from the fitting procedure;
moreover, data in a broad temperature range were necessary. In our previous attempt6

we considered the expression for the second virial coefficient of the Kihara rod-like
molecules with three Padé (3,2)-approximants and assumed that the expression for the
2cLJ potential had the same form as that for the Kihara rod-like potential with the same
value of σ and ε/k and the rod length equal to the site–site distance. Values of the
coefficients in the above-mentioned approximants were determined on the basis of the
computer data of the 2cLJ systems. The method was limited to the 2cLJ molecules with
the reduced site–site distance l < 0.6; reasonable agreement between the calculated and
experimental data was obtained.

Recently, we studied systems of non-spherical rod-like molecules assuming the Ki-
hara pair potential7,8. We applied the perturbation theory to describe the equilibrium
behaviour of fluids along the coexistence curve. Comparison of the obtained Kihara
potential parameters with results of a similar approach, used by Fischer and Kohler9,10

for the 2cLJ systems, revealed considerable interrelations between potential parameters
of both the potentials7,8. This finding has motivated our present attempt to correlate the
ncLJ virial coefficients by expressions derived for the Kihara rod-like molecules in
which modified values of parameters ε/k, σ and l are used instead of those of the ncLJ
systems.

This paper is divided into two parts: In the first part we give a brief survey of ex-
pressions for the second virial coefficient for the mentioned pair potentials followed by
the results of our machine evaluation of B2cLJ, B3cLJ and B4cLJ in the temperature range
(0.6,3). The second part is devoted to the correlation of the experimental data. This
correlation is performed on three levels, namely (i) for the individual molecules in the
given temperature range (ii) for all the 2cLJ molecules, 3cLJ molecules and 4cLJ mole-
cules (iii) for all the molecules studied in the whole temperature range.
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THEORETICAL

A general expression for the second virial coefficient, B, follows from the theory of
moderately dense fluids2,4,6,11

B   =   
1

2!V
  ∫  [exp− u(12) ⁄ kT −  1] d1 d2 ,                    (1)

where di = dr dω stands for the differential of the generalized coordinate of molecule i
and ω ≡ θ,φ for the normalized angular coordinates, T and V denote temperature and
volume and k is the Boltzmann constant. For the both pair potentials it is possible to
transform the variables [r1,r2] → [r1,r12] and to perform integration with respect to r1.
One obtains

B   =   
1
2

 ∫ ∫ ∫  [exp− u(r12,ω1,ω2) ⁄ kT −  1] dr12  dω1 dω2 . (2)

This expression represents the basic formula used in the computer evaluation of the
second virial coefficient of the 2cLJ, 3cLJ and 4cLJ molecules whose pair potential is

u(r,ω1,ω2)   =   ∑ 
1

n2

 uαβ (r12
αβ) . (3)

For the Kihara pair potential

u(r12,ω1,ω2)   =   u(s)   =   4 ε [(σ ⁄ s)12 −  (σ ⁄ s)6] (4)

Eq. (2) can be rewritten into the form

B   =   
1
2

  ∫ 
0

∞
 [exp− u(s) ⁄ kT −  1] S1 + s + 2 ds , (5)

where S1 + s + 2 stands for the mean surface area of two convex cores 1 and 2 with the
surface-to-surface distance s.

For two identical rod-like molecules S1 + s + 2 can be expressed in terms of the surface
area of the single core (a rod of a length σ lKihara), Si and the mean curvature integral
divided by 4 π, Ri (= l σ/4). After substitution into Eq. (5) one obtains
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B ⁄ σ3   =   
2 π
3

  ∫ 
0

∞
 f d(s3)  +  4 π (Ri

 ⁄ σ)  ∫ 
0

∞
 f d(s2)  +  4 π (Ri

 ⁄ σ)2  ∫ 
0

∞
 f ds , (6)

where f stands for the Mayer function f = (exp[− u/kT] − 1). Integral in the first term of
the last equation is just equal to that of the expression for the Lennard–Jones mole-
cules; exact solution can be obtained after expansion of a part of the exponential func-
tion11,12. A similar method was used also for the determination of the remaining two
integrals3. All three integrals are functions of the reduced temperature, Tr = kT/εKihara.
The expansions for the above integrals, b3

∗ , b2
∗ , b1

∗ , can be expressed13 in the form of the
Padé (3,2)-approximants

bi
∗    =   (2 Tr

−1 ⁄ 2)i ⁄ 6  
ai +  bi Tr

−1 ⁄ 2 +  ci Tr
−1 ⁄ 2

1  +  di Tr
−1 ⁄ 2  , (7)

where ai, bi, ci, and di are

a3 = 1.18163   b3 = −2.23086   c3 = 0.08095   d3 = −0.46061
a2 = 1.09948   b2 = −1.32389   c2 = 0.06148   d2 = −0.47330
a1 = 1.03825   b1 = −0.80242   c1 = −0.07053   d1 = −0.48277 .

In our previous approximative method to correlate the 2cLJ virial coefficient we
modified coefficients a3 – d1. Here we assume that Eqs (6) and (7) can be used even for
ncLJ molecules once we modify values of the pair potential parameters.

The Second Virial Coefficient of the 2cLJ, 3cLJ and 4cLJ Molecules

In the course of the numerical determination of the second virial coefficient of the 2cLJ
molecules with parameters εαβ/k, σαβ = σ and l2clj we employed Eq. (2), where we
expressed  r12

αβ in terms of r12 and three angles, θ1, θ2 and φ12. In order to avoid integra-
tion over a large interval of distances where the Mayer function practically vanished we
performed the coordinate transformation r → 1/ζ. We define ε2cLJ = 4εαβ so that Tr =
T/ε2cLJ = T/4εαβ. Values of the second virial coefficient were determined by the Monte
Carlo integration in which 2 . 106 configurations were generated.

In the beginning of the work the method was tested by a comparison of the calcu-
lated second virial coefficient of hard dumbells and of the 2cLJ molecules (with the
reduced site–site distance l2clj = 0.5) with data from the literature2,4. Agreement within
the combined error estimates was obtained. Data of Maitland et al.2 for the 2cLJ system
covers the range of l2cLJ (0.06) only. We thus determined B for the reduced site–site
distance l2cLJ = 0.7, 0.8, 0.9 and 1.0. The obtained values of B together with the data of
Maitland et al.2 are listed in the first part of Table I. We estimate the error of our
B2cLJ/(πσ3/6) values to be 0.002.
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TABLE I
The second virial coefficient of the 2-centre, 3-centre and 4-centre Lennard–Jones molecules

Tr

0.6 0.8 1.0 1.4 2.0 3.0

2cLJ      

0.1 −5.846 −3.527 −2.389 −1.276 −0.555 −0.059

0.2 −5.120 −3.081 −2.060 −1.046 −0.383  0.075

0.3 −4.400 −2.613 −1.701 −0.784 −0.178  0.241

0.4 −3.790 −2.195 −1.369 −0.530  0.028  0.413
0.5 −3.287 −1.834 −1.072 −0.293  0.227  0.585

0.6 −2.871 −1.521 −0.808 −0.074  0.416  0.752

0.7 −2.514 −1.241 −0.563  0.134  0.600  0.918

0.8 −2.213 −0.999 −0.349  0.322  0.769  1.072

0.9 −1.979 −0.800 −0.167  0.488  0.924  1.217

1.0 −1.755 −0.605  0.014  0.655  1.081  1.364

3cLJ      

0.1 −5.380 −3.243 −2.180 −1.131 −0.447  0.024

0.2 −4.110 −2.417 −1.547 −0.668 −0.086  0.316

0.3 −3.080 −1.683 −0.949 −0.198  0.302  0.648

0.4 −2.286 −1.074 −0.429  0.237  0.680  0.981

0.5 −1.620 −0.532  0.051  0.655  1.056  1.322

0.6 −1.021 −0.026  0.512  1.069  1.434  1.671

0.7 −0.467  0.458  0.961  1.479  1.816  2.028
0.8  0.059  0.930  1.404  1.891  2.203  2.391

0.9  0.525  1.362  1.819  2.284  2.577  2.746

1.0  0.981  1.787  2.225  2.668  2.941  3.088

4cLJ      

0.1 −4.891 −2.936 −1.950 −0.968 −0.323  0.123
0.2 −3.281 −1.829 −1.069 −0.294  0.222  0.578

0.3 −2.088 −0.915 −0.290  0.354  0.782  1.071

0.4 −1.098 −0.098  0.441  0.998  1.364  1.602

0.5 −0.237  0.648  1.127  1.621  1.939  2.136

0.6  0.569  1.376  1.813  2.259  2.539  2.700

0.7  1.368  2.109  2.510  2.915  3.160  3.287

0.8  2.188  2.880  3.252  3.619  3.831  3.924

0.9  3.003  3.648  3.990  4.319  4.495  4.549
1.0  3.677  4.302  4.631  4.940  5.094  5.124
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Next, we evaluated the second virial of the linear 3cLJ molecules where both the
site–site distances were the same; thus, the inner site coincided with the centre of the
molecule. In the case of the 3cLJ molecule, Tr = T/ε3cLJ = T/9εαβ. Data of the second
virial coefficient, B3cLJ/(πσ3/6), for l3cLJ ∈  (0,1) are given in the second part of Table I;
their error estimate amounts 0.004.

Finally, we evaluated B4cLJ of the linear 4cLJ fluid by the same procedure from
2 – 3 . 106 configurations. The neighbour sites on the rod were all situated a distance
l4cLJ apart, so that the reduced end-to-end distance was 3 l4cLJ. The obtained data (with
the error estimate 0.008) are listed in the last part of Table I.

Correlation of the ncLJ Virial Coefficients

Our correlation method is based on the idea of a close resemblance of the n-centre
Lennard–Jones and Kihara potentials. Our previous work has indicated7,8 that for the
given 2cLJ molecule with parameters ε2cLJ, σ2cLJ and l2cLJ the Kihara model exists (with
parameters εKihara = Eε2cLJ, σKihara = Sσ2cLJ and lKihara = Ll2cLJ) such that the orthobaric
data along the coexistence curve can be fairly well described when general depend-
ences of L, S, and E on l were used. The question then arose whether the mentioned
idea could be applied also to the case of virial coefficients. Thus, in the first step of our
work, we employed the above mentioned expression for the Kihara rod-like model to
correlate “experimental” data of the individual 2cLJ molecules in the studied tempera-
ture range, Tr ∈  (0.6, 3.0). It was found that for three adjustable parameters, E, S, L,
perfect agreement of the calculated and experimental data was obtained. In our study of
dense fluids7 we considered only two adjustable parameters keeping L = 1. When we
introduced the same approximation for the correlation of the virial coefficient, the
agreement of the calculated and experimental data was less good. However, taking
S = 1 and varying E and L we obtained agreement almost within error estimates. This
is obvious from Table II where the comparison of the calculated and experimental sec-
ond virial coefficient of the 2cLJ, 3cLJ, 4cLJ molecule fluid with lncLJ = 0.5 is given.
When the resulting values of E and L were plotted as functions of the site–site distance,
lncLJ, smooth, almost linear dependences result, see Figs 1a and 1b. We therefore at-
tempted to correlate B2cLJ in the whole range of temperatures and site–site lengths. The
following dependences for L and E were assumed:

L   =   (a  +  b l  +  cl2) (8)

and

(1 ⁄ E)   =   1  +  d l  +  f l2  +  g l3  +  h l4 , (9)
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where the subscript 2cLJ of the variable l2cLJ was omitted for simplicity. From the
optimization procedure applied to a set of 60 state points of the 2cLJ fluid we found

a = 0.25793   b = 1.33519   c = −0.77092
d = 0.13343   f = 3.76442   g = −4.34838   h = 1.60747 .

Comparison of the correlated and experimental data, given in Table III reveals the
fact that the method yields a good prediction of the second virial coefficient of the
studied molecules; the standard deviation in B amounts 0.009. Actually, the agreement

TABLE II
Results of the data fitting of the second virial coefficients of the 2cLJ, 3cLJ and 4cLJ molecules, all
with the reduced site–site distance l = 0.5

Tr    2cLJ 3cLJ 4cLJ

0.6 −3.287 −0.003 −1.620 0.002 −0.237 0.001

0.8 −1.834 0.000 −0.532 −0.000 0.648 −0.002 
1.0 −1.072 0.003 0.051 0.003 1.127 −0.001 

1.4 −0.293 0.004 0.655 0.004 1.621 −0.000 

2.0 0.227 0.002 1.056 0.004 1.939 0.001

3.0 0.585 −0.002 1.322 0.004 2.136 0.001

FIG. 1
The comparison of the calculated dependences of: a the L-ratios and b the E-ratios on the end-to-end
distance l with the “experimental” results for the 2cLJ (● ), 3cLJ (❍ ) and 4cLJ (❍ ) molecules
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TABLE III
Deviations of the calculated and experimental second virial coefficients the individual sets of 2cLJ,
3cLJ and 4cLJ molecules

l
Tr

0.6 0.8 1.0 1.4 2.0 3.0

2cLJ

0.1 0.010 0.011 0.012 0.015 0.016 0.013

0.2 −0.019 −0.006 0.001 0.006 0.007 0.005

0.3 −0.014 −0.007 −0.003 −0.001 −0.003 −0.007 

0.4 0.005 0.001 0.000 −0.002 −0.007 −0.012 

0.5 0.015 0.007 0.004 0.000 −0.006 −0.012 

0.6 0.013 0.008 0.007 0.004 −0.001 −0.006 

0.7 −0.005 −0.003 −0.001 0.002 0.001 −0.003 

0.8 −0.022 −0.010 −0.003 0.003 0.006 0.005

0.9 −0.005 0.002 0.006 0.009 0.009 0.008

1.0 0.007 0.002 −0.000 −0.004 −0.008 −0.011 

3cLJ

0.1 0.007 0.018 0.025 0.034 0.038 0.038

0.2 −0.039 −0.016 −0.003 0.009 0.014 0.015

0.3 −0.014 −0.014 −0.012 −0.009 −0.009 −0.013 

0.4 0.025 0.005 −0.002 −0.009 −0.015 −0.021 

0.5 0.035 0.012 0.004 −0.005 −0.012 −0.018 

0.6 0.018 0.007 0.004 −0.001 −0.003 −0.006 

0.7 −0.008 −0.002 0.001 0.005 0.008 0.008

0.8 −0.033 −0.015 −0.006 0.004 0.010 0.015

0.9 −0.009 −0.001 0.001 0.006 0.010 0.014

1.0 0.021 0.006 −0.003 −0.010 −0.013 −0.010 

4cLJ

0.1 −0.025 0.003 0.017 0.031 0.038 0.123

0.2 −0.009 −0.006 −0.002 0.003 0.005 0.028

0.3 0.028 0.006 −0.001 −0.007 −0.011 −0.015 

0.4 0.004 −0.010 −0.015 −0.018 −0.021 −0.023 

0.5 −0.006 −0.004 0.000 0.003 0.006 0.007

0.6 0.000 0.006 0.011 0.016 0.020 0.024

0.7 0.002 −0.003 −0.006 −0.009 −0.010 0.009
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is considerably better than that obtained in our previous treatment6 for 2cLJ systems of
l2cLJ ∈  (0.1 – 0.6).

Similar accordance was found for the 3cLJ fluids, too. For the coefficients a – h it
holds

a = 0.82460   b = 2.07212   c = −1.22240
d = 0.48739   f = 7.88557   g = −10.00001   h = 4.28459 .

The standard deviation is 0.016.
For the 4cLJ systems with l4cLJ = 0.1 − 0.7 (for the higher site–site distances and

considered reduced temperatures, great positive values of the virial coefficient result,
out of practical importance) we found

a = 1.16480   b = 4015103   c = −3.17804
d = 0.64362   f = 15.20336   g = −24.73544   h = 14.70230

with the standard deviation 0.017. It appears that the standard deviations of the con-
sidered sets amount 2 – 3 times the error estimates of the pseudoexperimental data.
Comparison of values of the E and L parameters determined for the individual mole-
cules, with the predicted dependences is depicted in Fig 1a and 1b. It is evident that
curves in the both figures lie quite close together once we consider end-to-end distance
instead of lncLJ as the independent variable. It is thus desirable to look for the coeffi-
cients enabling the determination of the second virial coefficient of all the linear ncLJ
fluids. From the optimization procedure, where we used the sum of squares of devia-
tions in the virial coefficients as the objective function, the following coefficient re-
sulted:

a = 0.51780   b = 0.37648   c = −0.10807
d = 0.38685   f = 1.79619   g = −1.27312   h = 0.310729 .

The standard deviation in this case is relatively high, i.e. 0.090, see Table IV.

DISCUSSION

In this paper we present results of our evaluation of the second virial coefficient of the
two-centre Lennard–Jones molecules [with reduced site–site distance l ∈  (0.7,1)],
three-centre Lennard–Jones and four-centre Lennard–Jones model molecules with l ∈
(0,1). The Monte Carlo integration method was used where usually 2 . 106 configura-
tions were generated; the reduced temperatures Tr ∈  (0.6 – 3.0) were considered. It
appears that the second virial coefficient of the consequent ncLJ models increases
rapidly towards high possitive values with the increasing values of the reduced site–site
distance.

In order to correlate the obtained data of the virial coefficient, we propose a method
in which the (exact) expressions derived for the Kihara molecules with rod-like cores
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TABLE IV
Deviations of the calculated and experimental second 2cLJ, 3cLJ and 4cLJ molecules from the unique
fitting procedure

l
Tr

0.6 0.8 1.0 1.4 2.0 3.0

2cLJ

0.1 0.038 0.032 0.032 0.035 0.036 0.033

0.2 −0.117 −0.057 −0.029 −0.004 0.010 0.016

0.3 −0.219 −0.129 −0.086 −0.048 −0.027 −0.015 

0.4 −0.241 −0.155 −0.0114 −0.077 −0.056 −0.044 

0.5 −0.212 −0.149 −0.118 −0.091 −0.076 −0.068 

0.6 −0.158 −0.124 −0.107 −0.093 −0.085 −0.082 

0.7 −0.101 −0.095 −0.093 −0.090 −0.090 −0.093 

0.8 −0.034 −0.052 −0.062 −0.072 −0.080 −0.087 

0.9 0.065 0.016 −0.009 −0.036 −0.055 −0.069 

1.0 0.145 0.073 0.036 −0.003 −0.030 −0.049 

3cLJ

0.1 0.143 0.105 0.091 0.081 0.074 0.067

0.2 0.079 0.067 0.064 0.061 0.058 0.053

0.3 0.051 0.038 0.034 0.031 0.029 0.022

0.4 0.039 0.023 0.018 0.013 0.009 0.004

0.5 0.010 0.000 −0.001 −0.002 −0.005 −0.007 

0.6 −0.035 −0.028 −0.022 −0.017 −0.013 −0.011 

0.7 −0.072 −0.049 −0.037 −0.024 −0.015 −0.009 

0.8 −0.083 −0.056 −0.041 −0.026 −0.016 −0.007 

0.9 −0.012 −0.008 −0.008 −0.006 −0.004 −0.001 

1.0 0.102 0.063 0.040 0.018 0.005 0.000

4cLJ

0.1 0.272 0.194 0.163 0.136 0.118 0.103

0.2 0.252 0.184 0.154 0.127 0.109 0.092

0.3 0.174 0.131 0.114 0.098 0.087 0.077

0.4 0.042 0.044 0.049 0.054 0.057 0.058

0.5 −0.046 −0.008 0.015 0.038 0.055 0.065

0.6 −0.056 −0.022 −0.002 0.019 0.034 0.045

0.7 0.011 −0.009 −0.019 −0.031 −0.037 −0.039 
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are used considering modified (effective) pair potential parameters. It is assumed that
the thickness of the effective Kihara potential equals to the σ-parameter of the ncLJ
model. Because we substitute for the site–site interactions, acting at the ends of bonds
(of the two-centre model) interactions along the whole rod, one can expect shortening
of this effective rod length in comparison with the original site–site distance. From
similar reasons, a decrease in the effective ε/k value (with respect of the value of the
ncLJ model) with the increasing value of l can be expected. Actually in the more elab-
orate method one can consider the effect of the decrease of the ratio E with the increas-
ing value of l in the effective thickness (an increase) and the effect of both these
changes on the ratio L.

In the simpler method considered in this paper (i.e. under assumption of the equi-
valence of thickness and σ) for all the site–site distances a set of εKihara and lKihara can
be found which yield a perfect correlation of the second virial coefficients in the con-
sidered temperature range for the given ncLJ model. The ratios L and E were almost
linear functions of the site–site distance; unfortunately, assumption of the linear de-
pendence leads to a rather crude correlation. We thus have considered polynomials in l
(it appears that the E-ration is a linear function of L) taking into account the limitating
values of both the ratios for l tending to zero.

Whereas the optimization procedure in which all the values of the second virial coef-
ficient of the models with the same number of sites in molecules leads to a fair correla-
tion of the data of the individual models, a similar approach for all the B-values
irrespective the number of sites in molecules (where the end-to-end distance is con-
sidered) yields too harsch description.

In our previous work on the statistical thermodynamic description of the dense fluids
composed of linear molecules we have empirically found interrelations between the
Kihara and the 2cLJ potential parameters. In the mentioned study7 we assumed equal
values of the reduced length parameters. It is, however, interesting to find out how our
new rules, expressed by Eqs (8) and (9) predict the effective Kihara parameters in cases
when all three parameters were adjusted and σ2cLJ and σKihara were approximately the
same. This is the case of Cl2 where σ2cLJ = 0.3262 and σKihara = 0.3234 nm. According
to Eqs (8) and (9) lKihara = 0.600 and εKihara = 431 K compared with the values adjusted
to the orthobaric data7 0.621 and 424 K. A fair accordance is obvious.

It can be concluded that the proposed method which employs the modified potential
parameters to correlate equilibrium data of fluids interactive through the multicentre
pair potential via the thermodynamic functions of the Kihara fluid – with the interac-
tion parameters interrelated by simple formulas – is practical and fairly general.
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